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3 ,\ ABSTRACT
Vvﬁedisumtheproblemofbo‘mdarycondiﬁons for the vorticity form of the 2-D
’; . Navier-Stokes equations and the Prandtl boundary layer equations. We present a new formu-
i lation of the vorticity boundary conditions and relate these conditions to those which are
; currently used in numerical algorithms. We present a finite difference scheme incorporating
°' the new boundary conditions for the Prandt] boundary layer equations. Numerical results are
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1. Vorticity Boundary Conditions for the 2-D Navier-Stokes Equations

In this paper we present some preliminary results concerning investigations into the issue
of boundary conditions for vorticity and the boundary generation of vorticity in the context of
the two dimensional incompressible Navier-Stokes equations and the Prandtl boundary layer
equations. We first discuss the origin of the problem with vorticity boundary values for the
Navier-Stokes equations. We then discuss two techniques, one due to Chorin [3), and the
other due to Quartapelle and Valz-Gris 8], for overcoming this problem. These two tech-
niques seem very different, and yet when incorporated into numerical schemes, both appear to
give reasonable solutions to the Navier Stokes equations. One of the primary motives for this
investigation was to understand why this should be so. In order to obtain this understanding,
we found it necessary to derive our own solution to the problem of boundary conditions. We
present this, and use the derivation to help explain the relationship between the two earlier
approaches. Our derivation also suggests new methods for implementing the vorticity boun-
dary conditions in numerical schemes. This aspect will be discussed in a future paper, how-
ever, to illustrate the general idea of our approach we consider an application of our technique
to the Prandtl boundary layer equations. We present a numerical scheme for these equations
and provide some computational results obtained with this scheme. We also compare a finite
difference scheme for these equations with a scheme introduced by Chorin in [4].

The equations we are concerned with are the two dimensional incompressible Navier-

Stokes equations,
% +d-Vd=-VP + vAu (1.1)
V.a=0 (1.2)
d(a) = Ba) for aedfl . (1.3)

Here a is the velocity, P the pressure and v the viscosity. We assume the fluid is of constant

density equal to one. (1 is the region in R? with boundary 3Q. B(a) is the velodty on the




boundary, often taken to be identically zero.

In the vorticity formulation of (1.1)-(1.3) the velodity field & is taken to be the sum of a

velocity field due to an irrotational flow and a velocity field due to a rotational flow. Let ¢ be

5 the potential for the irrotational flow and W the stream function for the rotational flow. We
| assume ¢ satisfies

A6=0 2.8.4 man.
an
Here A denotes the normal to the boundary
R Let w be the vorticity. By taking the curl of equation (1.1) one obtains the following
AK equation for the transport of vorticity,
] - | 3 . U Vo = vAw . (1.4)
e U= (b 6,) + (¥, -¥) (1.5)
and ¥ is determined from the equation

RN AY = -
o ¥=0 onaf} . (1.6)
T The boundary conditions given above for ¢ and V¥ guarantee that the normal velocity
boundary condition is satisfied. To satisfy the tangential velocity condition we must also have

%:L =B-7- (d.9,) - 7= b(x) for xedd a.n
gl where ¢ is the unit tangent to o).

* . Often the vorticity form of the equations is used in numerical computations. One reason
s foritsuseistlmtthenumb_erofunhwwmisreducedfromthreetoone.Also.inmanyﬂows
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the vorticity is itself of great interest and it is desirable to compute it’s evolution directly
rather than compute in the primitive variables and differentiate the result. The use of the vor-
ticity formulation is not without it’s difficulties. One major difficulty is the proper vorticity

In the translation of the equations from primitive variables (1.1)-(1.3) to the vorticity
form (1.4)-(1.7), boundary conditions for the vorticity are not obtained. Moreover, it appears
that too many boundary conditions are given on the stream function. (Both those in (1.6) and
(1.7) must be satisfied.) However, a bit of thought reveals that the freedom in choosing the
vorticity boundary conditions occurs precisely because the stream function is over determined.
For, unless there is some mechanism for manipulating w in the interior of the domain, the
problem which defines ¥ will not, in general, be well posed. It is therefore not surprising
that a common thread which runs through all numerical implementations is the manipulation
of the vorticity, usually near the boundary, in a way which insures that both (1.6) and (1.7)
are satisfied. However, apart from this similarity, the numerical techniques for overcoming
this difficulty can appear quite different. We shall consider two approaches in use. There are
others, most notably those which use the relation between ¥ and w in (1.6) and (1.7) at
points on the boundary. For a review of these, and of the results which can be obtained with
them, see [6] and [7].

One approach to solving the problem of boundary conditions is that which is implicitly
used by Chorin in [3]. In that paper, he utilizes the method of fractional steps to solve equa-
tions (1.4)-(1.7). The method is to advance for one timestep the solution to the Euler equa-

tions:

dw . = -
rr +0:-Vo=0 (1.8)

(with U defined by equation (1.5) and W determined only by (1.6)) followed by one timestep
of the solution of the heat equation
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dw _
T viw . (1.9)

The vortex blob method is used to advance the solution for the Euler step, and a random walk
technique is used to simulate the diffusion step. In the solution of the Euler equations, (1.8),
boundary conditions on the vorticity are not needed since U - # = 0. In the solution of the
heat equation (1.9) boundary conditions are needed, and one of the novel ideas contained in
Chorin’s paper is the method by which the boundary values of vorticity are obtained.

After one step of the Euler equations, the interior vorticty distribution will not neces-
sarily induce a velocity field which satisfies the tangential velocity boundary condition. If & is
the distribution of vorticity after one time step of Euler, and (i, V) is the velocity constructed
from this distribution, then (3, v) - # # b(s) for s € 3. Chorin’s idea is to introduce vorti-
city on the boundary in an amount which cancels this error. Specifically, if the boundary is
divided up into segments of length 4 then the vorticity introduced per segment is

w(s) = (4, 9], - 1 h = b(s,)

where s, is the center of the ith segment on the boundary. This vorticity is then allowed to dif-
fuse into the region and participate in the evolution of the flow.

A common concept in fluid mechanics is that vorticity is "produced” at object boun-
daries. As discussed by Batchelor in [2], this production occurs so that the external or outer
fluid velocity will match the velocity of the object. An attractive feature of Chorin’s method
is that it mimics this process of boundary generation of vorticity. Computations performed
with this method (and an improved version incorporating boundary layer modelling [4]) sug-
gest that this algorithm generates a good approximation to the solution of the equations
(1.4)-(1.7). From this fact we conclude that boundary vorticity generation, as understood
from the nature of the physical problem, is intimately related to the missing boundary condi-

tions for the vorticity transport equations.




The second approach is that due to Quartapelle and Valz-Gris (8] and is more mathemat-
ically rather than physically motivated. Essentially, they pose the following question "What
are the conditions on the vorticity so that the stream function constructed using (1.6) also
satisfies (1.7)?" The answer is contained in the following theorem presented in their paper,

Theorem. A = ~w in 0}, ¥, = a(s) and Z= a"’ = b(s), if and only if

Jo nda = [nb(s) = ae) Tas (1.10)
for any function  harmonic in 2.

In particular, if a(s) = 0 and a no slip condition is specified, b(s) = 0, then the vorticity
must be orthogonal to all harmonic functions defined in the domain.

Using this result, Quartapelle and Valz-Gris overcome the difficulty of finding explicit
boundary conditions on the vorticity by adjoining the constraint (1.10) to the equations for
vorticity transport (1.4). Their implementation consists of advancing the solution of (1.4) one
time step without regard to the constraint and then projecting the result onto the component
which satisfies (1.10). It is for this reason that we refer to their approach as the projection
method. Details of their numerical implementation and some nice computational results con-
cerning the driven cavity problem are presented in [9].

Aside from the fact that both approaches are used to solve the same set of equations,
the techniques do not appear to be related. Chorin’s scheme effects the vorticity on the boun-
dary, while in the method of Quartapelle and Valz-Gris, the interior vorticity is effected as
well. In order to relate the two, we found it necessary to obtain a precise set of boundary
conditions for the vorticity. Our derivation is motivated by the observation of Quartapelle
and Valz-Gris that one should consider the evolution of the vorticity as a constrained evolu-

tion. Instead of explicitly finding the constraint on the vorticity and adjoining it to the equa-

tions as Quartapelle and Valz-Gris do, we precede by finding conditions which insure that as
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the vorticity evolves the constraint will automatically be satisfied.

We begin by expressing the "extra” boundary condition (1.7) as a constraint on the vorti-
city. For this purpose we use the Green's function, G(x,s), for the domain ). This function
is the solution of

AG(x,s) = 8(s) xe¢} G(xs)=0 xedd

where 8(s) is a Dirac deita function located at s ¢ 2. We have

V)= - .‘); G(x,8)w(s,r)ds

so that condition (1.7) can be written as

-
v

&
i 3
é‘ , m ?l; G(x,8)w(s,0)ds b(x) forxeadQd (1.11)
& To find boundary conditions which insure that solutions of (1.4) induce a stream func-
e
o tion which satisfies both (1.6) and (1.7), we find boundary conditions which guarantee that the
L)
*:; derivative with respect to time of the constraint (1.11) vanishes. We require
o 3 (a j' cxx -
. (= Sa(s,)ds + b(x)) =0 forxed)
r:| at "onm 0
R
X If we use the fact that  is a solution of (1.4) and the Green’s identity
at G
he w= f G(x,s)Aw(s,t)ds — f —=(x,a)w(a,)da
et a s dn
Oy
& we find
i‘i""
: 9.3 =
j riem -,( G(x,s)w(s,f)ds = 0
3‘,
i -4 w
P a»{ G@)75, (sur)ds = 0
' - g—" { Glx,$)(=0 - Va(s,) + vAw(s,))ds = 0
¥
et
)
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- v:—n _L' Glx,s)Aw(s,f)ds = g—u { G(x,5)U - Veo(s,f)ds

- ‘3—‘: + 33;;[1 %(x,a)m(a,r)da = -117%;,‘]; G(x,5)U - Vw(s,r)ds (1.12)

This is an integral-differential equation which determines the boundary values. Values
satisfying (1.12) and used as data for (1.4) will insure that the time derivative of (1.11) will be
zero. If we assume that the initial vorticity satisfies (1.11), then we will have insured that this
constraint, and hence (1.7), is satisfied for all time.

If one uses the boundary conditions (1.12) with (1.4)-(1.6) then the resultant vorticity
will also satisfy (1.7), and hence will satisfy the constraint as formulated by Quartapelle and
Valz-Gris, (1.10). Conversely if one solves (1.4) with (1.10) explicitly satisfied then the vorti-
cty will satisfy (1.12). We conclude that Quartapelle and Valz-Gris, by enforcing (1.10)
explicitly at every timestep, are implicitly implementing the boundary conditions (1.12).

The connection between the boundary conditions (1.12) with the technique due to Cho-
rin is less dear. If one considers finite difference methods for (1.4)-(1.6) using (1.12), then
one finds that they have the structure that the boundary vorticity is obtained by solving an
integral equation with a forcing function which is proportional to the error in the tangential
velocity induced by one step of Euler flow. Rather than get into the details of the numerical
schemes, this result can by illustrated by considering an explicit scheme which is discrete in
time and continuous in space:

kvl gk
-9—?‘—2—- = =U: Vot + vAw* (1.13)

Boundary values of vorticity are needed in the evaluation of the Laplacian on the right
hand side of (1.13). These values can be approximated using (1.12). The right hand side of
(1.12) is evaluated using the solution at time k8¢ and then the left hand side is solved for the

boundary values. If one uses the expression for one step of Euler flow
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‘ak*l_
8¢
to approximate the convective terms in the right hand side of (1.12), one finds

@ = _U- Vot (1.14)

L3 -134 “k+1 _ k&
-v-a_”."; G(x,s)U - V(nﬁ(s,t)ds = TE;-"; Glx,5)( Py - ® ds

= v-_al‘(g—n{ G(x,s) @+ ds - 3—,.{ Gx,s) wh)ds

Thus the right hand side of (1.12) has the interpretation of being the difference in the tangen-
tial velocity at the boundary between that at time k8¢ and that induced by one step of Euler
flow. If the tangential velocity boundary condition is satisfied at time k8¢, then the right hand
side is just proportional to the error in velodity induced by one step of Euler flow.

The incorporation of boundary conditions (1.12) has the flavor of that utilized by Cho-

rin, however, in Chorin’s scheme one does not solve an integral equation to determine the

boundary vorticity. We imagine that Chorin’s method of constructing the strength is an |

approximation to the inversion of the integral equation on the left hand side of (1.12). A ;

detailed analysis has yet to be carried out. For a related set of equations, the Prandtl boun-

dary layer equations, it is very clear that Chorin’s vorticity creation is equivalent to the imple-

mentation of vorticity boundary conditions. For a further discussion of this latter case, see

the following section. |
10 conclude, one should view the process of solving the Navier-Stokes equations as a

problem of solving a set of equations subject to a constraint. Quartapelle and Valz-Gris's

technique is to explicitly adjoin the constraint to the vorticity evolution equations. Their

% numerical implementation takes the form of a projection method. Alternatively, one can
Ei incorporate the boundary conditions derived above. These conditions will insure that if the
:?:" constraint is satisfied initially, then it will be satisfied for all ime. We believe Chorin's scheme
,':.. to be an approximation to these boundary conditions. Thus the schemes have the same goal, |
E$ that of evolving the vorticty in such a way that the stream function satisfy boundary ‘\
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W conditions (1.6) and (1.7), but they differ in the manner in which this goal is achieved. This
h) observation explains why such different techniques applied to the same set of equations can
e both yield reasonable solutions.
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10

2. Results for the Prandtl Boundary Layer Equations

In this section we apply the ideas of the first section to the Prandtl boundary layer equa-
tions. This set of equations, which we shall use to describe laminar flow over a half-infinite
flat plate, is a simpler set of equations than the 2-D Navier Stokes equations, and yet when
expressed in the vorticity formulation possesses the same problems with vorticity boundary
conditions. We shall derive the continuous boundary conditions for the vorticity, and then
implement a numerical method using these boundary conditions. Results of computations with
this numerical method will be presented. A similar discussion concerning the implementation
of numerical methods for the 2-D Navier Stokes equations will be presented in a forth coming
paper [1].

In the vorticity form, the Prandt! boundary equations are

dw 3w

—aT"'ll'V(n'v? 2.1)
=3
w 3y (2.2)
¥ =Uy+ [olx,s,)ds 2.3)
’

v = - fRulnsd) 2.4)
] ax

with boundary conditions
u=v=0 aty=0 x>0 2.5

u=U; at y=+> (2.6)

Here (u,v) is the velocity and w the vorticity. ~ The domain is the quarter plane 0 < x < ®
and0 sy s ™,
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N As is the case with the Navier Stokes equations, when one reconstructs the velocity field
f:‘c, from the vorticity, it is not automatic that the boundary condition on « in (2.5) will be satis-
b fied. Similarly, boundary conditions necessary to dlose equation (2.1) are not given. We pre-
v cede, as in the first section, to derive boundary conditions by expressing the condition on « in
,.2"§f§ (2.5) as a constraint on the vorticity and then setting time derivative of this constraint equal to

nriv zero. Using (2.3), the constraint on the vorticity is

2 Up+ folxst)ds =0 x>0 andt 20 2.7
() Q

P

1 &,

Thus we require

a_r _
at{m(x,s,t)ds 0

f’f'{.ﬂ
SN

£

¢ Jw -

§§ -.;':—ﬂ-Vu+v-‘:iy"z'-d.r=0
R .

~ =8l Yeds . 2.8
e ay bmo = i Ve @8
3::;% (2.8) is the desired boundary condition. We now consider a numerical method for solving
these equations which incorporates these boundary conditions.
f‘,' Our computational domain is the rectangular region described by the points (x, v) such
. that 0 s x<x, and 0 s y s y,. The mesh we use is rectangular with widths dx and dy in
i'_.: the x and y direction respectively. The values of the vorticity and velocity are computed at
{‘?:3“ the grid points (ids, jdy) and are designated by w,, u,, and v,, with 0 i = m and
:':‘ ' 0 < j s n. To approximate (2.1) we use a one step explicit method (Euler’s method) to
: advance the solution in time, and approximate the advection term & - Ve using a second order .
upwind differencing scheme due to Colella [S]. (We believe the results are relatively

\ ‘,'.‘ A
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12
independent of the advection scheme used.) The second derivative term was approximated by
central differences. Our scheme is thus expressed by

"'l‘,zl - “’i‘.‘ £ )=k
& =A,J(ﬂ*,u)+D}D).m,J
where A, (i, w") is the second order approximation to the convective term in (2.1) and
Dy Djw, = wf/y = 20, + of 2.9)

dy?
To construct u we use the trapezoidal rule to approximate the integral in (2.3). We

assume no vorticity above the line y = y_, and hence ¥ = U, for points above this line. For

the remaining points (j < n) we use
n +
wy = Up+ 3 Lot Cipe) — £1) 4, (2.10)
p=/
v is approximated using
J - -
e L by T W1y | Biriper T U154
Vig p-12( 2 + . ) dy (2.11)

i.e. a trapezoidal rule approximation to (2.4) in which central differences are used to approxi-
mate the derivatives of u. At points on the left and right computational boundaries second
order one sided differences are used in (2.11) instead of central differences.

It remains to specify the boundary conditions used for the vorticity. At the left edge of
the computational boundary, the inflow side, we assumed that there is no vorticity immedi-
ately upstream. At the right edge of the computational boundary we assumed outflow boun-
dary conditions - i.e. the vorticity is unspecified at points just outside of the computational
domain. At the top and bottom of the domain we specified the normal derivative of w. This
data was incorporated into the difference stencil using the method of fictitious points. For
points on such boundaries, the central difference occurring in (2.9) uses a point just outside

the computational domain. This point is eliminated by using the normal derivative boundary

VT e
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condition. For example, at points on the plate, the second derivative term is approximated by

-~ o
PRy
[N

K - 2@‘1 - 2‘0‘
: B D;Dy m‘.o B ——r 0 -

_2230|
dyz dy ay i,0

Y For the data at the bottom we used
ot
doy o o1& Apa @ 0t + A @Y
i 3y 0= ,E-o[ 3 Jdy (2.12)
By i.e. a discrete analog of (2.8). At the top we used the boundary condition %‘;ih_, =0. This
' ‘\:'
;;..jti‘; was chosen because it insures that the boundary condition u = 0 at y = 0 is satisfied exactly
' by the discrete scheme. This fact can be verified by directly calculating the difference in the
é.;e:’ velocity at the plate induced by wt*! and w*. The procedure is a discrete version of the argu-
)
b
:%é: ments used to find the conditions that the time derivative of the constraint (2.7) vanish. An
A
o upper boundary condition appears, however, because the computational domain is finite. The
Q.';':* dependence of the velocity at the plate upon the far field boundary condition illustrates the
e
ot point that one must be careful about the numerical implementation of such schemes in
L
unbounded domains. This problem with far field boundary conditions is also discussed within
i the context of the Navier Stokes equations in (1].
Wty
i‘g'l
J:;;§E Our computational results correspond to a parameter selection of v = .2, x, = 2.0,
0”“‘
ya = 4.0, dx = dy = .1, 8¢ = .0125, and the onset velocity Uy = 1.0. The values of param-
l‘: 6’
;‘,i;: eters v, U, x., and y, were selected to insure that the majority of the vorticity was confined
LI/
,J;:: to the region ysy, when 0=<x=zx, The timestep was chosen so that
- 8 < mm(%- %‘-,-3—). No instability was observed for this choice of parameters.
",q“l 0 (]
£y
i‘:n'f ° . [
N The use of the boundary condition (2.8) assumes that the initial vorticity induces a velo-
K ity field which satisfies all of the boundary conditions. The initial distribution of vorticity ‘
used,

T T AR AT R T ORI AYE. ATNVENT UV AT L0 0 T Tyt T ooy ) AT 'l - NANTE
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satisfies this assumption. This choice of initial conditions corresponds to impulsively starting
the fluid at time t=0 with a velodty Uy,

The development of the boundary layer is depicted in figures 2.1(a) to 2.1(c). At time
t = 0 the velocity is uniform with value U; except at the surface of the plate where it is zero.
At a later time, ¢ = 2.5, a typical boundary layer profile is emerging near the leading edge.
Further down the plate the velodity field is still uniformly horizontal, as the upstream influ-
ence is not felt. The fluid is retarded, however, because of the diffusion of vorticity from the
wall. At a much later time ¢ = 10.0 the solution has reached steady state and the boundary
layer profile is depicted in figure 2.1(c).

A steady state solution of the equations is the Blasius solution. This is a solution which
is self similar with a similarity variable n = y(%)%, i.c. the steady state solution (u,v) is
given by

u(xy) = u(n)  v(xy) = vy(n)

where (u,(7),v,(n)) is the Blasius solution. A comparison of the steady state profile and the
Blasius solution obtained from [10] is given in figure 2.2. In this figure, the ¥ component of
the computed velodty is shown using arrows, while the u component for the corresponding
Blasius solution is denoted by the solid line. The solution is plotted for positions x=.5, x=1.0
and x=1.5 along the plate. The difference between the computed solution and the Blasius
solution is extremely small.

To see more dlearly the accuracy with which the Blasius profile is approximated, we

show in figure 2.3 a plot of the difference between the computed & velocity and the 4 velocity
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of the Blasius solution. The results are plotted verses the similarity variable n so that each
profile can be compared with the other. The velocity profile which is most in error is that
near the leading edge of the plate, x=.5. This is to be expected since the number of points
per profile is less at this station than at stations further down the plate. However, the max-

imum relative error of all the profiles is less than 1%.

These results demonstrate that it is possible to incorporate the boundary condition (2.8)
into a numerical scheme and obtain accurate answers. Furthermore, this incorporation can be
done within the framework of an explicit method. (There has been some doubt about the pos-
sibility of this.) The use of an explicit method is limiting because of the time step restriction.
A semi-implicit finite difference scheme has been developed and used to obtain results which
agree with those given above. We chose not to discuss the scheme because it is a bit more
difficult to describe and not any more illuminating as an example than the purely explicit
scheme.

We conclude this section by discussing the relation between a method introduced by
Chorin for solving the Prandtl boundary layer equations and an analogous finite difference
scheme. In (4], Chorin uses the method of fractional steps and vorticity boundary creation to
solve equations (2.1)-(2.5). The discretization used is based on computational elements which
are segments of vortex sheets. The basic timestep, ignoring the precise implementation
details, are as follows: An approximate solution of the inviscid equations is advanced one
time-step (equation 2.1 without v). This leads to a vorticity distribution which induces a velo-
city field which does not satisfy the tangential boundary condition on the plate. If the velocity

field at location idx on the plate is U, then a sheet of strength 2U, is created on the boun-

dary. This sheet is then allowed to participate, with the sheets already in the fluid, in a ran-
dom walk. This random walk approximates one step of the evolution of the viscous terms of

the equation.
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Consider the following fractional step scheme which uses the finite difference approxi-

mations given previously,

t7’ - of

_J_B‘__.L = - A, J(,zk,u,k) (2.13)
i+l o k]

2 = i = yD;Dyaf;! 2.14)

The normal derivative boundary condition

NG R I

%, =1
ay 1,0 v 0

is incorporated into the finite difference stencil occurring in (2.14). The upper boundary con-
diﬁonis%‘;il,,-o. One can show, as with the explicit scheme given previously, that if the
velodity field induced by w* satisfies (2.5) then the velocity induced by w**! satisfies (2.5) as
i*‘" [ well,

The effect of the boundary condition (2.15) is to induce vorticity on the boundary of the
computational domain. One can isolate the amount of vorticity induced by this boundary con-
dition by considering one step of equation (2.14) using zero initial data and boundary condi-
tion (2.15). This is the vorticity @ defined by

Oy~ %, DD-
8¢ v Y )’wou

with initial condition wg, = 0 and boundary condition (2.15). Working through the algebra

we find that @ is non-zero only at the lower boundary, and is given by

- - & é (ﬁ2_+ 1('fl wk) + A!,p('f)m‘)]dy (2.16)
dy p=0 2

@9

If we use the expression for A, from (2.13) in (2.16) we find that
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2

By0= Ey',z..,lﬁ’ Chal A C AR DI

PO p (St )

- (217
Here we are making the assumption that w}, satisfies (2.5) discretely, i.e.

" (wk k
U, + zfﬂ&;ﬁﬁdy-o
/=0
The quantity Uj in (2.17) is the u velocity at the point ids on the plate which is induced
by &**!. From the definition of @‘*! we see that this is the slip induced by one step of Euler

zU,

flow. The vorticity —— corresponds to a computational element which induces a jump in

velodtyonU,,i.e.asheetwithmengchU,. This is precisely the strength of the vortex
sheet which is introduced by Chorin in his scheme. Thus, there is exact agreement in the
amount of vorticity which is added at each time step. We believe that this is a remarkable
result in light of the difference in the types of discretizations used.
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Figure 2.1(a)-(c)
Velority vector plots at times t = 0.0, t = 2.5 and t=10.0
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Figure 2.2
Comparison of the computed u velocity component (arrows) with the
Blasius solution (solid line).
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